

Aerogel

- Instructions used to produce analysis using LArSoft https://cdcvs.fnal.gov/redmine/projects/lardbt/wiki/AGCodes
- Our naming convention for the four aerogel PMTs is:

US E/W are the two PMTs for the KEK counter (Hamamatsu H1161)

DS 1 is (the 3" square Photonis XP5382 PMT)

DS 2 is (the 2" circular EMI 9954B PMT.)

Aerogel Pulse Area

Pulse Area for each PMT with & without aerogel hit exist cuts applied

TOF

* TOF allows for π/μ & proton separation - Given the timing of the readout of the TOF + WC's you can do particle ID (π/μ , p, K) before the particle enters your LArTPC.

Aerogel Pulse Area

Using runs 6258-6265(Positive Polarity)

Aerogel Pulse Area

- Using runs 6100-6329(Negative Polarity)
- We can focus on just on muons and pions separation analysis.

Aerogel Analysis

- Aiming to separate muons and pions in a momentum range where muons emit Cherenkov radiation while pions do not.
- Different indices of refraction are sensitive to different momentum ranges.
- The combination of the two aerogel Cherenkov counters, pions and muon can be identified for p<400MeV/c</p>

MC Beam Composition Studies

- How can we use beam simulation help understand the aerogel counters?
- How can we use aerogel counters help understand the beam simulation?

MC Beam Composition Studies (Ideal Case)

- ❖ We can set constraints to the WC by requiring hits in the Aerogel Counter.
- We can assume efficiencies for muons and pions to be:

```
n=1.05  
0% for 0 < p_{\mu} < 310MeV, 100% for 310MeV < p_{\mu} < \infty  
0% for 0 < p_{\pi} < 440MeV, 100% for 440MeV < p_{\pi} < \infty  
n=1.103  
0% for 0 < p_{\mu} < 220MeV, 100% for 220MeV < p_{\mu} < \infty  
0% for 0 < p_{\pi} < 310MeV, 100% for 310MeV < p_{\pi} < \infty
```

MC Beam Composition Studies (Ideal Case)

MC Beam Composition Studies (Ideal Case)

WC Information

- Getting the X and Y position from the WC of a track at the TPC front face.
- Working on projection of WC tracks to aerogel counters.

WC & Aerogel

Getting the X and Y position from the WC of a track at the TPC front face.

WC & Aerogel

- ❖ Total WC momentum with Aerogel hitexist requirments
- This is positive polarity data with no cuts to get rid of protons.
- ❖ This is 100A data where all muons and pions should be above Cherenkov threshold.
- Investigation with negative polarity data is also in progress

Work in progress

- Scanning over remaining negative and positive polarity data to increase statistics and see if can have a better look at the Bethe-Bloch dependence.
- Calculate the efficiencies for detecting pions vs protons for pulse area versus TOF.
- We can now get the position of hits for each wire chamber.
- Next: I will use the wire chamber information in the anatree is able to tell us the X and Y position of a particle in WC3 and WC4 to estimate the position of particles passing through the aerogel counters. The calculate the efficiencies for each aerogel counter for hints of separation.
- ❖ The aerogel system was not part of our beamline survey. Will is on shift 5/6-5/15

Backup - Aerogel Codes in the LArIAT Software

https://cdcvs.fnal.gov/redmine/projects/lardbt/repository

lariatsoft/LArIATRecoModule/AerogelCherenkovCounterSlicing_module.cc

lariatsoft/LArIATRecoAlg/AGCounterAlg.cxx

lariatsoft/LArIATRecoAlg/AGCounterAlg.h

Iariatsoft/LArIATDataProducts/AGCounter.cxx

lariatsoft/LArIATDataProducts/AGCounter.h

lariatsoft/LArIATAnaModule/AnaTreeT1034_module.cc